A new strategy for the decellularisation of large equine tendons as biocompatible tendon substitutes.

نویسندگان

  • M Bottagisio
  • A F Pellegata
  • F Boschetti
  • M Ferroni
  • M Moretti
  • A B Lovati
چکیده

Tendon ruptures and/or large losses remain to be a great clinical challenge and often require full replacement of the damaged tissue. The use of auto- and allografts or engineered scaffolds is an established approach to restore severe tendon injuries. However, these grafts are commonly related to scarce biocompatibility, site morbidity, chronic inflammation and poor biomechanical properties. Recently, the decellularisation techniques of allo- or xenografts using specific detergents have been studied and have been found to generate biocompatible substitutes that resemble the native tissue. This study aims to identify a novel decellularisation protocol for large equine tendons that would produce an extracellular matrix scaffold suitable for the regeneration of injured tendons in humans. Specifically, equine tendons were treated either with tri (n-butyl) phosphate alone, or associated to multiple concentrations of peracetic acid (1, 3 and 5 %), which has never before been tested in vitro.Samples were then analysed by histology and with biochemical, biomechanical, and cytotoxicity tests. The best decellularisation protocol, resulting from these examinations, was selected and the chosen scaffold was re-seeded with murine fibroblasts. Resulting grafts were tested for cell viability, histologic analysis, DNA and collagen content. The results identified 1 % tri (n-butyl) phosphate combined with 3 % peracetic acid as the most suitable decellularised matrix in terms of biochemical and biomechanical properties. Moreover, the non-cytotoxic nature of the decellularised matrix allowed for good fibroblast reseeding, thus demonstrating a biocompatible matrix that will be suitable for tendon tissue engineering and hopefully as substitutes in severe tendon damages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specialization of tendon mechanical properties results from interfascicular differences.

Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain...

متن کامل

Capacity for sliding between tendon fascicles decreases with ageing in injury prone equine tendons: a possible mechanism for age-related tendinopathy?

Age-related tendinopathy is common in both humans and horses; the initiation and progression of which is similar between species. The majority of tendon injuries occur to high-strain energy storing tendons, such as the human Achilles tendon and equine superficial digital flexor (SDFT). By contrast, the low-strain positional human anterior tibialis tendon and equine common digital extensor (CDET...

متن کامل

The Healing Effects of Aquatic Activities and Allogenic Injection of Platelet-Rich Plasma (PRP) on Injuries of Achilles Tendon in Experimental Rat

BACKGROUND Clinical tendon injuries represent serious and unresolved issues of the case on how the injured tendons could be improved based on natural structure and mechanical strength. The aim of this studies the effect of aquatic activities and alogenic platelet rich plasma (PRP) injection in healing Achilles tendons of rats. METHODS Forty rats were randomly divided into 5 equal groups. Se...

متن کامل

Ultimate Tendon Stress in CFRP Strengthened Unbounded HSC Post-Tensioned Continuous I-Beams

The use of unbounded tendons is common in prestressed concrete structures and evaluation of the stress increase in unbonded tendons at ultimate flexural strength of such structure has posed a great challenge over the years. Based on the bending experiment for two-span continuous post-tension beams with unbounded tendons and externally applied CFRP sheets, the monitoring of the stress increment ...

متن کامل

Variations of Plantaris, Palmaris Longus, and Fifth Superficial Flexor Tendons: a Cadaver Study

Background & Aims: The Plantaris muscle is located in the superficial posterior compartment of the leg and is absent in some individuals. The present study was undertaken to evaluate the absence variation of Plantaris muscle and its possible relation with Palmaris longus and fifth superficial flexor digitorum of the hand. Methods: 83 fresh cadavers, referred to legal medicine center, Kerman, Ir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European cells & materials

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016